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Abstract--Many space-science experiments need an active isolation system to provide

them with the requisite microgravity environment. The isolation systems planned for use

with the International Space Station (ISS) have been appropriately modeled using relative

position, relative velocity, and acceleration states. In theory, frequency-weighting design

filters can be applied to these state-space models, in order to develop optimal Hz or mixed-

norm controllers with desired stability and performance characteristics. In practice,

however, since there is a kinematic relationship among the various states, any frequency

weighting applied to one state will implicitly weight other states. These implicit frequency-

weighting effects must be considered, for intelligent frequency-weighting filter assignment.

This paper suggests a rational approach to the assignment of frequency-weighting design

f'dters, in the presence of the kinematic coupling among states that exists in the

microgravity vibration isolation problem.

Index Terms: Continuous time systems, control systems, feedback systems, linear-quadratic

control, linear systems, optimal control
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I. INTRODUCTION

The microgravity vibration isolation problem has received considerable attention in recent years; its

difficulty and importance arc by now well known. It is anticipated that a number of materials processes

and fluid physics science experiments, planned for study on the International Space Station (ISS), will

experience unacceptably high background acceleration levels if not isolated [1]--[4]. The low-frequency

disturbances of greatest concern (below 10 Hz) arc a natural accompaniment of space flight with large,

flexible, unloaded structures and random, human-induced excitations.

Passive isolation alone is incapable of providing the necessary disturbance attenuation [5], especially in

the low frequency range (below about 1 Hz); and even were a sufficiently soft spring physically

realizable, it could not isolate against direct disturbances to the experiment. If the experiment is tethered

(e.g., for evacuation, power transmission, cooling, or material transport), a passive isolator cannot provide

isolation below the comer frequency imposed by the umbilical stiffness.

An active isolator (such as a magnetic suspension system) that merely possesses a low positive

stiffness fares no better in the presence of an umbilical, for the same reasons. Furthermore, if the control

system seeks to lower the comer frequency by adding negative stiffness (viz., to counteract the umbilical's

positive stiffness) the system will at best possess almost no stability robustness. In the face of the usual

umbilical nonlinearities and uncertainties, this situation is clearly unacceptable. At very low frequencies,

the rattlespace constraints become limiting, so that any isolation system must have unit transmissibility in

that region [6], [7]. In short, the isolator must be active; and it must be capable of dealing with the

particular frequency-dependent complexities accompanying a tethered payload and a restrictive

rattlespaee.

Various active isolation systems exist or are under development to address the microgravity vibration

isolation problem. The first in space was STABLE ("Suppression of Transient Accelerations By

LEvitation"), developed jointly by McDonnell Douglas and Marshall Space Flight Center (MSFC), and

flown with USML-2 on STS-73 in October 1995 [8]. The second isolation system was MIM

("Microgravity Vibration Isolation Mount"), developed jointly by the University of British Columbia,
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MPB Technologies, and the Canadian Space Agency, and placed into operation on the Russian Mir Space

Station in April 1996. A second version ofMIM 0VIIM 2) was successfully tested on STS-85 in August

1997 [9]. Boeing's Active Rack Isolation System (ARIS), built under contract with NASA to isolate an

entire International Standard Payload Rack (ISPR), was first tested on-orbit aboard STS-79 in September

1996 [10]. MSFC is developing a second-generation experiment-level isolation system (g-LIMIT:

"GLovebox Integrated Microgravity Isolation Technology'), building on the technology developed for

STABLE [11]. This compact system will isolate microgravity payloads in the Microgravity Science

Glovebox (MSG).

Relative-position and absolute-acceleration measurements are typically available for control of these

isolation systems. Linearized analytical system models, using these states, exist for MIM [12], and g-

LIMIT, and are under development for ARIS. Each model has a state-space form appropriate for

centralized controller design by H2 synthesis. Extensive design software has been written in MATLAB to

facilitate H2 controller design for MIM and g-LIMIT.

II. PROBLEM

The states of the analytical state-space models for the above six-degree-of-freedom (6DOF)

microgravity isolation systems are relative positions and velocities, and absolute translational

accelerations. The models assume the experiment platform to be subject to indirect translational

acceleration disturbances (i.e., transmitted indirectly through the umbilical) and direct translational and

rotational acceleration disturbances (i.e., applied directly). Controller design by H2 synthesis (or as a

subproblem of a mixed-norm design approach) uses a quadratic performance index that has the following

forms in the frequency domain:

or
l
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where X y (s) = Wx(s) X (s)

is the frequency-weighted state vector, and Uf (s) = W, (s) U(s)

is the frequency-weighted control vector. In particular,

'w_(s) Xt (s) ]

XiCs) = W2(s)X,(s)_ ;
W3(s)X3 (s)J

where

is the relative position vector,

is the relative velocity vector, and

(3)

(4)

(5)

X t (s) = X(s) - D(s) (6)

X z(s) = s[X(s)- O(s)] (7)

X3(s) = m*s2X(s) _ s2X(s) (8)
$+0) k

represents the absolute acceleration for sufficiently large 0_,. The control engineer seeks to shape the

closed-loop acceleration transmissibility so as to pass low-frequency acceleration disturbances (to

accommodate rattlespace constraints), to reject intermediate-range acceleration disturbances, to dampen

resonances, and to "turn off" the controller below frequencies ofunmodeled system dynamics.

In principle, this shaping of the closed-loop system can be accomplished by judicious choices of

frequency-weighting filters W,(s)(i = 1, 2,3). In practice, however, there is an "implicit frequency

weighting," due to the kinematic coupling among the states, that clouds the choices of these design

weighting filters. For example, one might wish to weight relative-position states with some filter W_(s)

(perhaps a low-pass filter or an integrator) to induce large effective umbilical stiffiaesses at low

frequencies. However, due to the kinematic coupling between relative position Xl(s)and relative

velocity X2(s), which equals sXl(s), a frequency weight of Wl(s) on relative position is equivalent (in

the cost functional) to a weight of Iw_(s)on relative velocity. Alternatively, such a weighting is
$

combined weights of _W_(s) on absolute acazeleration s2X(s)and of -_21Wi(s) on indirectequivalent to

acceleration disturbance s2D(s). There are analogous implicit effects due to design weights on each
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other state. In short, the effective frequency weighting on X, (s) is the sum of the direct frequency

weighting W, (s) and of any implicit frequency weightings due to the effects of kinematic coupling among

states. The net effect of these direct and implicit frequency weightings can be less than fully intuitive;

without a rational procedure one can be leR essentially with a trial-and-error approach to frequency

weighting selections. In order to use the cost functional to choose appropriate frequency weights one

must first place it into a more suitable form.

IlL DESIGN FILTER SELECTION

A. Cost-Functional Form

The integrand of the cost functional J can be expressed as

l(s) = Ix (s) + I v (s), (9)

where Ix = X*fX f = X_W1°W1X,+ X_W;W2X2 + X;W;W3X_ (1O)

and =u}u : . (I I)

Since H2 or mixed-norm design mc_&ods require solving a matrix Riocati equation (M.R.E.), the presence

of a control penalty Iu couples the state- and control vectors (through this M.R.E.) in a manner that can

greatly cloud intuition in design filter selection. The relationships among state weightings and closed-

loop tmnsmissibilities can be all but obscured in some problems (such as the one at hand). This algebraic

"firewall" can be partially removed by assuming that the control is "cheap," an assumption which permits

neglecting 1u . Under this assumption, l(s) _ I x (s). (12)

In terms of relative-position-, relative-velocity-, and (for low enough frequencies) acceleration states,

and with the substitutions Q_ := W_*WI,(i = I,2, 3), (13)

the cost-functional integrand is

Zx(,>=(X-D)'Q,(X-D)+Is(X-D)I'Q,I4X-D)I (,4)

Let "Txo" and "1 "represent, respectively, the closed-loop transfer function from D to X, and the identity

matrix. With the substitution of Txv D forX, the integrand can be written as follows:
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Theusefulnessof theabovetwo formsfor Ix becomes evident when one considers that neither X nor D,

in general, has a uniform power spectrum. Further, the power spectrum of X varies as a function of the

designer's choice of control. These facts make (14) particularly unattractive for use in selecting

frequency-weighting filters. If the acceleration disturbance s2D is assumed to be zero-mean white

Gaussian, and independent of the control vector, the above form for 1x (jo_) is seen to be more useful for

frequency-weighting filter selection than a form which contains X explicitly. Since, with the white-noise

assumption, the magnitude of s2D does not vary with frequency oJ, only the terms within the square

brackets above require consideration, in assigning frequency-related penalties with Ix(jOo). ff the

acceleration disturbance is assumed, more realistically, to be filtered white noise, the coloring filters

Wa (s)can be incorporated easily into the square-bracketed portion of (16), by replacing Q; (i = 1, 2, 3) with

Wd (s)Q_(s)W_Cs).

B. F'dter Selection Considerations

One can now, with some degree of insight, attempt to shape the indirect-acceleration transmissibility

T,x.,2D(=Txv). In doing so, using (16), one must consider (1) the desired approximate shapes of the

transfer functions in TxD; (2) the alternative possibilities for the design frequency-weights (the Qi's, or,

equivalently, the _'s); and (3) the effect of the kinematic frequency factors oo-4 and o: z , along with any

disturbance-coloringfilters Wa(s).

Considerationswillincludethefollowing:

(I) An acceptableclosed-looptraasmissibilityTxvwillhave unitmagnitudeup tosome comer fi_equency

(e.g.,0.01 Hz), to pass low-frequencydisturbancesthatcannot be attenuatedwithout exceeding
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rattlespace constraints. It will then drop off in the intermediate frequencies, and finally rejoin the

open-loop transmissibility curve when the controller is to be turned off (e.g., at 100 Hz) to avoid

exciting high-frequency system modes.

(2) The frequency-weighting filters should be selected so that at low frequencies X - D dominates J, to

force the flotor to track the stator. At intermediate frequencies, s(X- D) should be significant, to

dampen out resonances. And at higher (and also, to the extent possible, intermediate) frequencies

s2Xshould be dominant, to increase effective system mass for acceleration-disturbance (s2D)

attenuation. State costs should roll off so that control action will not be required above some

frequency range.

(3) The "kinematic" frequency factors o74 and oJ-: (so designated here, because they arise from the

kinematic relationships among the states) must be considered in the choice of the design frequency

weights; these factors effectively trade off those weights against one another, in a frequency-

dependent fashion. In effect, the frequency factors represent additional "implicit frequency

weightings" that do not appear directly in the design frequency weights themselves. Observe, for

example, from the expression for Ix(joJ) that a frequency weight of W_(s)on relative position is

equivalent to a weight of 1W_ (s)on relative velocity (as previously noted). Both choices would have
s

equivalent effects on the cost functional, and would therefore place equivalent demands on the H2

controller design "machinery." (However, it might be possible only to implement one or the other of

the choices exactly, the "equivalent" choice perhaps being unrealizable.)

C. F'dter Choices

By building on the above considerations, it can be shown that a rational choice of frequency-weighting

filters W_(s)for the microgravity vibration isolation problem would be band-pass filtering of relative

velocity states, and constant weighting of all other states. (Other choices are possible.) To see this

consider band-pass filters, with poles located at oh and w 2 (co I < to2), to be applied to the relative
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velocities. Assume that the first and third legs of the filters have 20 dB/deeade slopes.

affects lx(jCO) as follows:

This filter choice

1) For low frequencies (oJ <<oh ), Ix(/Cz)_IIf'D)'|(TxD-I)I_QII_FxD-Ir[_L_ _ (17)

[L \_/ JJI s = jco

That is, l x(/O_)._ (X - D)"QI(X- D) , (18)

so that relative positions will dominate lx(jCo).

2) For intermediate frequencies (oh < oJ< oh ), relative velocity gains in significance.

1 and Q3 in this range,
>>

,x(S)_(s2D)'[_l'xD-I)l-_sQ2)_l'xrj-I)](_2D ). (19,

In this case, Ix(S). [s(X-V)]°Q 2[s(X-D)]. (20)

Since s(X-D) is significantly weighted in this region, there will be relative velocity feedback,

adding damping to the system. If the bandpass filter poles bracket any open-loop system natural

frequencies, the controller will tend to dampen out those system resonances.

3) Forh/gh frequencies(oJ>>a,2), lx(_)_(s21_'[fxDQsTxD_14Q_1._Q2](s2Z_1 • (21)
[L UL_UJJ) Is=j

(22)

so thatthecontributionof s2X to lx(JaO willbe significant.Since sZX and Q2 bothrolloffat40

dB per decade,and sinceQIand Q3 bothhave zeroslope,allterms of Ixf./a0willhave an 80-dB-

per-decaderoll-off.Thismeans thatatveryhighfrequenciescontrolactionwillnot be required:the

controllerwill"turnoff."Note thatifan additionalhigh-frequencypoleisadded to Q_ and to Q2 the

In particular, if

high-frequency integrand reduces to
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(23)

Acceleration,then,will dominate the high-frequency cost.

In summary, then the use of band-pass frequency-weighting filters on relative velocity states can be

expected to produce H2 controllers that address the concerns presented previously, in Section III-B.

IV. RESULTING CONTROLLERS

Use of these filters leads to H2 controllers that, in fact, yield desirable transmissibilities. The following

figures present typical transmissibility plots for a microgravity vibration isolation system that provides

relative position, relative orientation, and absolute acceleration measurements to an H2 controller. (The

relative velocity and relative angular velocity states are reconstructed in a Luenberger observer.) Fig. 1

shows the predicted transmissibilities to indirect acceleration disturbances, with both input and output

accelerations directed along the same axis of an experiment-platform accelerometer. (The plots are very

similar for the other orthogonal axes.)
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Figure 2. Direct-Disturbance Attenuation

Fig. 2 shows the predicted transmissibilities to direct translational disturbances, for the same controller

and in the same direction. {The lower curve in each figure is the closed-loop curve.) Note that both types
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of disturbanceexperiencesignificantattenuationin the0.01Hzto 10Hzfi'equencyrange.As indicated

by the first figure, the indirect (umbilical-induced) disturbances are simply transmitted without

attenuation in the range below 0.01 Hz, as required by rattlespace constraints.

V. A POSSIBLE DESIGN APPROACIt

The foregoing treatment suggests the following general design approach, for designing frequency-

weighting filters in the face ofkinematically linked states:

I) Develop a state-space model for the open-loop system, complete with all inputs (controls and

disturbances) and outputs. (In the microgravity vibration-isolation example above, the outputs were

relative positions, relative velocities, and absolute accelerations).

2) Consider the weighted state-energy portion, lx(jOJ), of the quadratic cost functional J. On effect,

this means that the present approach assumes "cheap control.") Express lx(jaO formally [i.e., as in

(16)] in terms of the following:

a) a vector consisting of a single, "base" type of inertial kinematic quantity [e.g., either absolute

positions X(s), or absolute velocities x_(s), or absolute accelerations sax(s)---or even absolute

position or acceleration disturbances B(s) or saD(s), respectivelymbut not a combination of the

above];

b) the undetermined design frequency-weighting filters [e.g., the filters W_(s)];

c) closed-loop transfer functions [e.g., T:a_(S)];

d) and kinematic frequency factors (i.e., powers of a_).

The base kinematic type may include, simultaneously in one vector, both translational and rotational

elements (such as position coordinates and orientation angles). It is required only that the units of

time be consistent throughout this base vector. For example, since positions have no temporal units,

whereas velocities have temporal units of inverse time, these two types of kinematic quantities should

not occur together in the chosen base vector.
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3) Choosea desiredapproximateshape (e.g., as portrayed by asymptotic Bode plots) for each of the

closed-loop transfer functions (CLTF's) appearing in the above expression for lx(jO_). Typically

this selection will subdivide the problem into various frequency regions of interest. For example, in

the microgravity problem addressed above, unit acceleration transmissibility is desired below some

corner frequency, maximum acceleration-disturbance attenuation is desired in an intermediate

frequency region, and controller "turn-off" is desired at higher frequencies.

[Note: It should be obvious that not all desirable CLTF's are, in fact, achievable. However, the

choice of reasonable, desired, CLTF's can provide a starting point for filter design selection.]

4) Use the desired CLTF's and the kinematic frequency factors to aid in the selection of the frequency-

weighting filters. Choose the filters such that lxO'to ) weights appropriately the most significant

states or kinematic quantities, in each frequency region of interest. By adjusting these weights

judiciously, the designer seeks to cause the desired terms of lx(jto)to dominate in the appropriate

frequency regions.

VL CONCLUDING REMARKS

The suggested approach, while not a simple, artless procedure, does permit the designer to incorporate

a degree of physical intuition into the frequency-weighting selection task, even when faced with

kinematic coupling among the states. Note that this approach retains its utility with states such as relative

positions ( x - d ) and relative velocities ( _ - d ), which include internally the plant disturbances (d). The

approach can help to inform the filter-selection task, to aid in threading the entanglements of intrinsic

frequency weightings and penetrating the "firewalr' of the M.R.E. This can relieve the designer of

resorting to a mere trial-and-error approach, and can lead to a considerable savings of time and effort in

the design process.

The method was applied to a 6DOF microgravity vibration isolation problem. Resulting filter

selections were shown to produce an effective H2 controller.
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As a final note, for some problems (such as the microgravity vibration isolation problem addressed

above), it is possible to re-express the integrand lx(s)as the sum of a quadratic in a sensitivity-function

matrix(S_)and a quadratic in a complementary sensitivity-function matrix (TaD). This can be seen

readily from (16), by using the substitution SxD =I-TxD • In such reformulations the weights on S.m and

TxD appear as functions of the i state weighting matrices _ (s). The problem of state weight-selection

This will be the subject of a futurecan then be treated conveniently as a mixed sensitivity problem.

paper.
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Figure Captions:

Figure 1. Indirect-Disturbance Attenuation

Figure 2. Direct-Disturbance Attenuation
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